EKG Interpretation

Collegio A. Volta 9/06/2017

Dr. Carmelo Sgarlata University of Pavia Department of Internal Medicine and Medical Therapy FADOI

WHO

WHAT

NOW WE CAN START...

WHAT IS EKG?

- Electrocardiography (ECG or EKG from Greek: kardia, meaning heart is the process of recording the electrical activity of the heart over a period of time using electrodes placed on a patient's body. These electrodes detect the tiny electrical changes on the skin that arise from the heart muscle depolarizing during each heartbeat.
- In a conventional 12 lead ECG, ten electrodes are placed on the patient's limbs and on the surface of the chest. The overall magnitude of the heart's electrical potential is then measured from twelve different angles ("leads") and is recorded over a

period of time (usually 10 seconds).

Why EKG...?

- **Rate**: Fast or slow?
- Rhythm: Sinus or not? Narrow complexes or wide?
 - Intervals: PR and QT normal or prolonged?
 - **P wave**: Normal sinus axis? Atrial enlargement?
- **QRS**: Axis shift? Q waves? Ventricular hypertrophy? Bundle branch
 - block?
 - The ST segment: Elevation or depression?
 - **The T wave**: Upright or inverted?

The Normal Conduction System

-

Conduction System

- The heart has a conduction system separate from any other system
- The conduction system makes up the PQRST complex we see on paper
- An arrhythmia is a disruption of the conduction system
- Understanding how the heart conducts normally is essential in understanding and identifying arrhythmias

Lead Placement

7

Einthoven's law

- An equilateral triangle used as a model of the standard limb leads used in electrocardiography.
- In the electrocardiogram the potential of any wave or complex in lead II is equal to the sum of its potentials in leads I and III.

Placement of Leads I, II, III

(in a 3-lead system)

EKG Distributions

- Anteroseptal: V1, V2, V3, V4
- Anterior: V1–V4
- Anterolateral: V4–V6, I, aVL
- Lateral: I and aVL
- Inferior: II, III, and aVF
- Inferolateral: II, III, aVF, and V5 and V6

P wave: atrial depolarization (right-left) QRS: ventricular depolarization (septum-LV-RV) T wave: ventricular repolarization

PR interval: efficiency of atrial and AV nodal conduction ST segment: "quiet time" between ventricular depolarization and repolarization QT interval: efficiency of ventricular depolarization and repolarization

EKG PAPER

Interpretation...

Develop a systematic approach to reading EKGs and use it every time

The system we will practice is:

- Rate
- Rhythm (including intervals and blocks)
- Axis
- PR, QRS and ST intervals examination

RATE

Rule of 300- Divide 300 by the number of boxes between each QRS = rate

- HR of 60-100 per minute is normal
- HR > 100 = tachycardia
- HR < 60 = bradycardia

Number of big boxes	Rate
1	300
2	150
3	100
4	75
5	60
6	50

Differential Diagnosis of Tachycardia

Tachycardia	Narrow Complex	Wide Complex
Regular	ST SVT Atrial flutter	ST w/ aberrancy SVT w/ aberrancy VT
Irregular	A-fib A-flutter w/ variable conduction MAT	A-fib w/ aberrancy A-fib w/ WPW VT

What is the heart rate?

(300 / 6) = 50 bpm

16

Rhythm

- Regular
- Irregular
- Normal Sinus Rhythm
 - Originating from SA node
 - P wave before every QRS
 - P wave in same direction a

Normal sinus rhythm

Normal Intervals

• PR

0.20 sec (less than one large box)

• QRS

0.08 – 0.10 sec
 (1-2 small boxes)

• QT

- 450 ms in men,
 460 ms in women
- Based on sex / heart rate
- Half the R-R interval with normal HR

Blocks

- AV blocks
 - First degree block
 - PR interval fixed and > 0.2 sec
 - Second degree block, Mobitz type 1
 - PR gradually lengthened, then drop QRS
 - Second degree block, Mobitz type 2
 - PR fixed, but drop QRS randomly
 - Type 3 block
 - PR and QRS dissociated

What is this rhythm?

First degree AV block → PR is fixed and longer than 0.2 sec

3rd degree heart block (complete)

The QRS Axis

Represents the overall direction of the heart's activity

Axis of –30 to +90 degrees is normal

The Quadrant Approach:

QRS up in I and up in aVF = Normal

		Lead a∨F		
		Positive	Negative	
Lead I	Positive	Normal Axis	LAD	
	Negative	RAD	Indeterminate Axis	

What is the axis?

Normal- QRS up in I and aVF

Ischemia

- Usually indicated by ST changes
 - Elevation = Acute infarction
 - Depression = Ischemia
- Can manifest as T wave changes

Right Bundle Branch Block

7. 43 year old man, asymptomatic

V1: RSR prime pattern with inverted T wave V6: Wide deep slurred S wave

Supraventricular Tachycardia

27. 40 year old woman with palpitations and lightheadedness

Narrow complex, regular; retrograde P waves, rate <220

Ventricular Tachycardia

19. 74 year old man with chest pain and palpitations

Hypokalemia

103. 46 year old woman with four days of vomiting and diarrhea

U waves Can also see PVCs, ST depression, small T waves

Ekg CHEKLIST

Thanks for your attention

Ŷ

31