Tutorato di analisi 1

Alen Kushova

Collegio Volta

Introduzione

- ▶ Integrazione alla Riemann
- ▶ Integrale orientato
- Linearità dell'integrale
- ► Teorema fondamentale del calcolo
- Regole di calcolo
- Integrali impropri

Integrazione alla Riemann

Quando introduciamo la teoria dell'integrazione alla Riemann è fondamentale introdurre qualche preconcetto

- ▶ Dato [a, b] intervallo reale, lo possiamo suddividere in tanti intervallini $A_k = [x_k, x_{k+1}]$ dove abbiamo preso $a = x_0 < x_1 < ... < x_n = b$. L'insieme degli n intervalli viene detto suddivisione di [a,b].
- ▶ Data una funzione f limitata su [a,b], introduco $I = \sum_{k=1}^{n} [\inf_{x \in A_k} f(x)]$ e anche $S = \sum_{k=1}^{n} [\sup_{x \in A_k} f(x)]$, rispettivamente detti somma inferiore e somma superiore di f in [a,b].

Immaginiamo ora di rendere sempre più fine la suddivisione, cioè n tende a $+\infty$, allora $I \leq S$ ma potrebbero essere uguali al passaggio al limite. Se questo succede abbiamo che la funzione f si dice integrabile su [a,b].

Integrale orientato

Def: L'integrale della funzione f su [a, b] è dato dal valore I = S chesi indica con :

$$\int_{a}^{b} f(x) \, \mathrm{d}x \tag{1}$$

Osservazione: se volessi integrare sull'intervallo [a,b] orientato negativamente, cioè b < a, definiamo quello che si chiama integrale orientato:

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx \tag{2}$$

é immediato osservare che vale:

$$\int_{a}^{a} f(x) \, \mathrm{d}x = 0 \tag{3}$$

Teoremi

Teorema (Linearità dell'integrale): Siano f e g funzioni reali e continue definite su [a,b] e si consideri $\lambda \in \mathbb{R}$ allora vale:

$$\int_{a}^{b} f(x) + g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
 (4)

$$\int_{a}^{b} \lambda f(x) \, \mathrm{d}x = \lambda \int_{a}^{b} f(x) \, \mathrm{d}x \tag{5}$$

Teorema: Sia f una funzione reale e integrabile su I intervallo di \mathbb{R} , comunque prendo $a,b,c\in I$ vale la relazione:

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$
 (6)

Teorema fondamentale del calcolo integrale

Enunciamo ora quello che è lo strumento fondamentale per poter calcolare l'integrale di una funzione f definita su un intervallo [a, b] e a valori in \mathbb{R} :

Def: La funzione $F : [a, b] \to \mathbb{R}$ definita da:

$$F(x) := \int_{a}^{x} f(x) \mathrm{d}x \tag{7}$$

è detta funzione integrale di f. Se f è limitata allora F è continua, se f è continua si vede che F è una funzione C^1 e vale che F' = f. Si dice quindi che F è una primitiva della funzione f

Teorema: Sia $f:[a,b] \to \mathbb{R}$ una funzione integrabile che ammette una primitiva F allora vale:

$$\int_{a}^{b} f(x) dx = F(b) - F(a) \tag{8}$$

Regole di calcolo

Integrazione per parti: Date $f \in g$ due funzioni continue su [a, b] e a valori in \mathbb{R} e chiamiamo rispettivamente $F \in G$ due loro primitive abbiamo allora:

$$\int_{a}^{b} F(x)g(x) dx = [F(x)G(x)]|_{a}^{b} - \int_{a}^{b} f(x)G(x) dx$$
 (9)

(La formula è facilmente ricavabile a partire dalla formula di Leibniz per la derivata del prodotto di due funzioni)

Integrazione per sostituzione: Sia f continua su [a,b] e sia $\phi: [\alpha,\beta] \to [a,b]$ una funzione C^1 , con $\phi(\alpha) = a$ e $\phi(\beta) = b$, allora vale:

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\phi(t)) \phi'(t) dt$$
 (10)

Ricordiamoci che $\alpha = \phi^{-1}(a)$ e $\beta = \phi^{-1}(b)$.

Integrale impropri

Nella pratica le funzioni continue su intervalli limitati non sono l'unica classe di funzioni integrabili. Per questa ragione introduciamo la definizione di integrale improprio alla Riemann.

Data f una funzione continua definita su [a,b), posso supporre $b<+\infty$ con f che non è limitata in [a,b], oppure $b=+\infty$, e in questi casi possiamo considerare $\forall c\in [a,b)$ la quantità $\int_a^c f(x)\mathrm{d}x$ allora:

Def: Viene detto integrale improprio della funzione f in (a, b) la quantità:

$$\int_{a}^{b} f(x) dx := \lim_{c \to b^{-}} \int_{a}^{c} f(x) dx$$
 (11)

qualora il limite esista finito.