Tutorato di analisi 1

Alen Kushova

Collegio Volta

Introduzione

- Successione
- Limite di una successione
- ► Calcolo dei limiti
- Successioni monotone
- Esercizi

Successioni

Una successione reale è una legge che ad ogni numero naturale n associa un numero reale. Solitamente la successione viene indicata con $\{a_n\}$, mentre l' elemento reale che viene associato al numero naturale n si indica con a_n . Formalmente:

Def: Una successione reale è una applicazione dall'insieme $\mathbb N$ dei numeri naturali nell'insieme $\mathbb R$ dei numeri reali. Se A è un'insieme non vuoto, una successione di elementi di A è un'applicazione da $\mathbb N$ in A.

Esempi: sono successioni le seguenti formule: $\{a_n\} = 2n$, $\{b_n\} = 2n + 1$, $\{c_n\} = \sqrt[3]{n^2}$

I primi due esempi proposti sono rispettivamente la successione dei numeri pari e quella dei numeri dispari.

Limite di una successione

Il concetto di limite di una successione riguarda intuitivamente ciò che avviene alla successione quando il numero n aumenta sempre più. Può succedere che la successione converge a un certo valore reale l, cioè al tendere di n a $+\infty$ il valore a_n tende a essere sempre più vicino a l.

Def: Diciamo che la successione reale $\{a_n\}$ converge al numero reale I se, $\forall \ \epsilon > 0$ esiste un indice $m \in \mathbb{N}$ tale che $\forall \ n \geq m$ vale la disuguaglianza:

$$|a_n - I| \le \epsilon \tag{1}$$

Una successione che converge al valore 0, ad esempio $\{a_n\}=1/n$, è detta *infinitesima*.

Esercizio: Se $\{a_n\}$ è infinitesima e vale che $|b_n| \le |a_n| \ \forall \ n$, dimostrare che anche $\{b_n\}$ é infinitesima.

Calcolo dei limiti - pt.1

Teorema (unicità del limite): Se la successione reale $\{a_n\}$ converge allora il limite è unico.

Osserviamo anche che se la successione converge allora è anche limitata, ovvero esiste una costante M tale che \forall $n \in \mathbb{N}$ vale $|a_n| \leq M$.

Può succedere però che la successione reale $\{a_n\}$ non converga. Allora si possono presentare le seguenti situazioni:

Def: La successione $\{a_n\}$ diverge positivamente se \forall M>0, esiste un indice m tale che \forall $n \geq m$ si ha $a_n \geq M$. Analogamente diverge negativamente se la successione $\{a_n\}$ diverge positivamente.

La successione $\{a_n\}$ oscilla se non converge e neppure diverge.

Trovare un esempio di successione per ogni definizione appena vista.

Calcolo dei limiti - pt.2

Sarà fondamentale nel calcolo dei limiti applicare il seguente teorema:

Teorema: Siano $\{a_n\}$ e $\{b_n\}$ due successioni convergenti allora convergono anche le successioni: $\{a_n + b_n\}$, $\{a_n - b_n\}$, $\{a_n \cdot b_n\}$ e vale:

$$\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}a_n+\lim_{n\to\infty}b_n\tag{2}$$

e le analoghe formule con il segno $\{-\}$, $\{\cdot\}$, inoltre se $\{b_n\}$ non è infinitesima converge anche la successione $\{a_n/b_n\}$ e vale:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \tag{3}$$

Successioni monotone

Def: la successione $\{a_n\}$ è detta *non decrescente* quando soddisfa che m < n implica $a_m \le a_n$ ed è detta *strettamente crescente* se vale con il simbolo <.

Analogamente diciamo che è non crescente quando soddisfa che m < n implica $a_m \ge a_n$ ed è detta strettamente decrescente se vale con il simbolo >.

Le successioni in questione vengono dette tutte monotone.

Teorema (fondamentale delle successioni monotone):

Se $\{a_n\}$ è una successione reale e monotona, allora non oscilla ma converge oppure diverge. Vale più precisamente che:

$$\lim_{n\to\infty} a_n = \sup_n a_n \quad oppure \quad \lim_{n\to\infty} a_n = \inf_n a_n \tag{4}$$

a seconda che $\{a_n\}$ sia non decrescente oppure non crescente.