6. Meccanica dei fluidi

Un **fluido** è un insieme di molecole distribuite a caso e tenute insieme da deboli forze di coesione e dalle forze esercitate dalle pareti del recipiente che le contiene.

sia i liquidi che i gas sono fluidi.

Collegio A. Volta Nicolò Di Dio

Pressione:

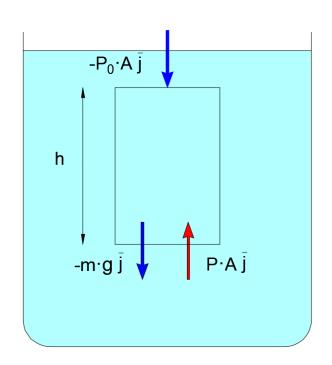
$$P = \frac{F}{A}$$

La pressione è una quantità scalare e la sua unità di misura è chiamata pascal (Pa).

Densità:

$$\rho = \frac{m}{V}$$

La densità è una grandezza scalare e si misura in kg/m³


Variazione della pressione con la profondità

Si consideri un recipiente contenente un liquido incomprimibile (ρ = costante) e in particolare la quantità di liquido contenuta dentro un cilindro di base A.

$$m = \rho A h$$

$$PA - P_0A - \rho Ahg = 0$$

$$P = P_0 + \rho g h$$

Dall'espressione precedente si osserva che la pressione in un liquido aumenta linearmente con la profondità.

Inoltre se il liquido è in contatto con l'atmosfera e P_0 è la pressione sulla superficie libera del liquido, allora P_0 è la **pressione atmosferica**:

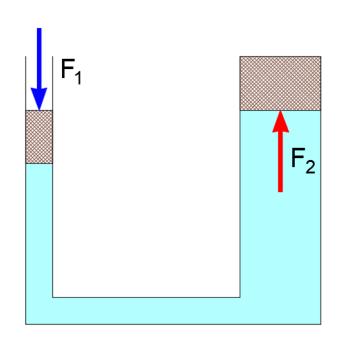
$$P_0 = 1 \ atm = 101325 \ P_a$$

Spesso la pressione viene espressa in termini di pressione differenziale:

$$P_{diff} = P - P_0$$

Legge di Pascal

Enunciato:


Una variazione di pressione applicata ad un fluido viene trasmessa invariata ad ogni punto del fluido e alle pareti del contenitore.

Ovvero la pressione, indipendentemente dalla forma del contenitore, è uguale nei punti alla stessa profondità.

Un 'applicazione della legge di Pascal è la pressa idraulica. Una forza F_1 viene applicata ad un piccolo pistone di area A_1 . La pressione viene trasmessa attraverso un liquido incomprimibile ad un pistone di area più grande A_2 .

Poiché la pressione è la stessa su entrambi i pistoni, si ha:

$$P = \frac{F_1}{A_1} = \frac{F_2}{A_2}$$

Spinta e principio di Archimede

La forza verso l'alto che un fluido esercita su un qualunque oggetto immerso è chiamata spinta di Archimede.

Principio di Archimede:

ogni corpo immerso parzialmente o totalmente in un fluido viene spinto verso l'alto da una forza eguale al peso del fluido spostato dal corpo.

$$F_A = \rho_{fluido}gV$$

la direzione del moto di un corpo immerso in un fluido è determinata dalla sua densità e da quella del fluido.

Dinamica dei fluidi

Consideriamo ora un fluido in movimento. In fluido in moto si possono individuare due tipi di flusso:

- Flusso stazionario: flusso in cui ciascuna particella del fluido segue cammini regolari e la sua velocità in un punto è sempre la stessa.
- 2. Flusso turbolento: flusso irregolare caratterizzato da zone con vortici.

Equazione di continuità dei fluidi

Si consideri un tubo di sezione variabile. Date due sezioni di area A_1 e A_2 , in regime di flusso stazionario la massa che le attraversa in un tempo Δt deve essere la stessa. Imponendo questa condizione si ricava che:

$$A_1v_1 = A_2v_2 = costante$$

Dall' equazione si intuisce che la velocità sarà maggiore dove il tubo è più stretto e viceversa.

Il prodotto Av, che ha le dimensioni di un volume diviso per un tempo, è chiamato portata.

Equazione di Bernulli

L'equazione di Bernulli stabilisce che, in regime di flusso laminare, la pressione di un fluido diminuisce se la velocità del fluido aumenta. Inoltre, la pressione decresce con l'aumento della quota.

$$P + \frac{1}{2}\rho v^2 + \rho gy = costante$$