
tutorial.djangogirls.org

Django urls · Django Girls Tutorial

DjangoGirls

6-8 minuti

We're about to build our first webpage: a homepage for your

blog! But first, let's learn a little bit about Django URLs.

What is a URL?

A URL is simply a web address. You can see a URL every time

you visit a website – it is visible in your browser's address bar.

(Yes! 127.0.0.1:8000 is a URL! And

https://djangogirls.org is also a URL.)

Every page on the Internet needs its own URL. This way your

application knows what it should show to a user who opens that

URL. In Django we use something called URLconf (URL

configuration). URLconf is a set of patterns that Django will try to

match with the requested URL to find the correct view.

How do URLs work in Django?

Let's open up the mysite/urls.py file in your code editor of

Django urls · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_urls/

1 di 6 13/11/2017, 20:01

choice and see what it looks like:

mysite/urls.py

"""mysite URL Configuration

[...]

"""

from django.conf.urls import url

from django.contrib import admin

urlpatterns = [

 url(r'^admin/', admin.site.urls),

]

As you can see, Django has already put something here for us.

Lines between triple quotes (''' or """) are called docstrings –

you can write them at the top of a file, class or method to

describe what it does. They won't be run by Python.

The admin URL, which you visited in previous chapter, is already

here:

mysite/urls.py

 url(r'^admin/', admin.site.urls),

This line means that for every URL that starts with admin/,

Django will find a corresponding view. In this case we're including

a lot of admin URLs so it isn't all packed into this small file – it's

more readable and cleaner.

Regex

Do you wonder how Django matches URLs to views? Well, this

part is tricky. Django uses regex, short for "regular expressions".

Django urls · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_urls/

2 di 6 13/11/2017, 20:01

Regex has a lot (a lot!) of rules that form a search pattern. Since

regexes are an advanced topic, we will not go in detail over how

they work.

If you still wish to understand how we created the patterns, here

is an example of the process – we will only need a limited subset

of the rules to express the pattern we are looking for, namely:

^ for the beginning of the text

$ for the end of the text

\d for a digit

+ to indicate that the previous item should be repeated at least

once

() to capture part of the pattern

Anything else in the URL definition will be taken literally.

Now imagine you have a website with the address like

http://www.mysite.com/post/12345/, where 12345 is

the number of your post.

Writing separate views for all the post numbers would be really

annoying. With regular expressions, we can create a pattern that

will match the URL and extract the number for us:

^post/(\d+)/$. Let's break this down piece by piece to see

what we are doing here:

^post/ is telling Django to take anything that has post/ at the

beginning of the url (right after ^)

(\d+) means that there will be a number (one or more digits) and

that we want the number captured and extracted

/ tells django that another / character should follow

$ then indicates the end of the URL meaning that only strings

Django urls · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_urls/

3 di 6 13/11/2017, 20:01

ending with the / will match this pattern

Your first Django URL!

Time to create our first URL! We want 'http://127.0.0.1:8000/' to

be the home page of our blog and to display a list of posts.

We also want to keep the mysite/urls.py file clean, so we will

import URLs from our blog application to the main

mysite/urls.py file.

Go ahead, add a line that will import blog.urls. Note that we

are using the include function here so you will need to add

that to the import on the first line of the file.

Your mysite/urls.py file should now look like this:

mysite/urls.py

from django.conf.urls import include, url

from django.contrib import admin

urlpatterns = [

 url(r'^admin/', admin.site.urls),

 url(r'', include('blog.urls')),

]

Django will now redirect everything that comes into

'http://127.0.0.1:8000/' to blog.urls and look for further

instructions there.

Writing regular expressions in Python is always done with r in

front of the string. This is a helpful hint for Python that the string

may contain special characters that are not meant for Python

itself, but for the regular expression instead.

blog.urls

Django urls · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_urls/

4 di 6 13/11/2017, 20:01

Create a new empty file named urls.py in the blog directory.

All right! Add these first two lines:

blog/urls.py

from django.conf.urls import url

from . import views

Here we're importing Django's function url and all of our views

from the blog application. (We don't have any yet, but we will get

to that in a minute!)

After that, we can add our first URL pattern:

blog/urls.py

urlpatterns = [

 url(r'^$', views.post_list,

name='post_list'),

]

As you can see, we're now assigning a view called post_list

to the ^$ URL. This regular expression will match ^ (a beginning)

followed by $ (an end) – so only an empty string will match.

That's correct, because in Django URL resolvers,

'http://127.0.0.1:8000/' is not a part of the URL. This pattern will

tell Django that views.post_list is the right place to go if

someone enters your website at the 'http://127.0.0.1:8000/'

address.

The last part, name='post_list', is the name of the URL that

will be used to identify the view. This can be the same as the

name of the view but it can also be something completely

different. We will be using the named URLs later in the project,

so it is important to name each URL in the app. We should also

try to keep the names of URLs unique and easy to remember.

Django urls · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_urls/

5 di 6 13/11/2017, 20:01

If you try to visit http://127.0.0.1:8000/ now, then you'll find some

sort of 'web page not available' message. This is because the

server (remember typing runserver?) is no longer running.

Take a look at your server console window to find out why.

Your console is showing an error, but don't worry – it's actually

pretty useful: It's telling you that there is no attribute 'post_list'.

That's the name of the view that Django is trying to find and use,

but we haven't created it yet. At this stage your /admin/ will also

not work. No worries – we will get there.

If you want to know more about Django URLconfs, look at the

official documentation: https://docs.djangoproject.com/en/1.11

/topics/http/urls/

Django urls · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_urls/

6 di 6 13/11/2017, 20:01

tutorial.djangogirls.org

Django views – time to create! ·
Django Girls Tutorial

DjangoGirls

2-3 minuti

Time to get rid of the bug we created in the last chapter! :)

A view is a place where we put the "logic" of our application. It

will request information from the model you created before and

pass it to a template. We'll create a template in the next

chapter. Views are just Python functions that are a little bit more

complicated than the ones we wrote in the Introduction to

Python chapter.

Views are placed in the views.py file. We will add our views to

the blog/views.py file.

blog/views.py

OK, let's open up this file and see what's in there:

blog/views.py

from django.shortcuts import render

Not too much stuff here yet.

Remember that lines starting with # are comments – this means

that those lines won't be run by Python.

Django views – time to create! · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_views/

1 di 2 13/11/2017, 20:01

Let's create a view as the comment suggests. Add the following

minimal view below it:

blog/views.py

def post_list(request):

return render(request,

'blog/post_list.html')

As you can see, we created a function (def) called post_list

that takes request and return a function render that will

render (put together) our template blog/post_list.html.

Save the file, go to http://127.0.0.1:8000/ and see what we've

got.

Another error! Read what's going on now:

This shows that the server is running again, at least, but it still

doesn't look right, does it? Don't worry, it's just an error page,

nothing to be scared of! Just like the error messages in the

console, these are actually pretty useful. You can read that the

TemplateDoesNotExist. Let's fix this bug and create a template in

the next chapter!

Learn more about Django views by reading the official

documentation: https://docs.djangoproject.com/en/1.11/topics

/http/views/

Django views – time to create! · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_views/

2 di 2 13/11/2017, 20:01

tutorial.djangogirls.org

Dynamic data in templates · Django
Girls Tutorial

DjangoGirls

4-5 minuti

We have different pieces in place: the Post model is defined in

models.py, we have post_list in views.py and the template

added. But how will we actually make our posts appear in our

HTML template? Because that is what we want to do – take some

content (models saved in the database) and display it nicely in our

template, right?

This is exactly what views are supposed to do: connect models and

templates. In our post_list view we will need to take the models

we want to display and pass them to the template. In a view we

decide what (model) will be displayed in a template.

OK, so how will we achieve this?

We need to open our blog/views.py. So far post_list view

looks like this:

blog/views.py

from django.shortcuts import render

def post_list(request):

return render(request, 'blog/post_list.html',

{})

Remember when we talked about including code written in different

files? Now is the moment when we have to include the model we

have written in models.py. We will add the line from .models

import Post like this:

blog/views.py

from django.shortcuts import render

from .models import Post

The dot before models means current directory or current

application. Both views.py and models.py are in the same

directory. This means we can use . and the name of the file

(without .py). Then we import the name of the model (Post).

But what's next? To take actual blog posts from the Post model we

need something called QuerySet.

QuerySet

Dynamic data in templates · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/dynamic_data_in_...

1 di 3 13/11/2017, 20:03

You should already be familiar with how QuerySets work. We talked

about them in Django ORM (QuerySets) chapter.

So now we want published blog posts sorted by

published_date, right? We already did that in QuerySets

chapter!

blog/views.py

Post.objects.filter(published_date__lte=timezone.now()).order_by('published_date'

Now we put this piece of code inside the blog/views.py file by

adding it to the function def post_list(request), but don't

forget to first add from django.utils import timezone:

blog/views.py

from django.shortcuts import render

from django.utils import timezone

from .models import Post

def post_list(request):

 posts =

Post.objects.filter(published_date__lte=timezone.now()).order_by('published_date'

return render(request, 'blog/post_list.html',

{})

The last missing part is passing the posts QuerySet to the

template context. Don't worry – we will cover how to display it in a

later chapter.

Please note that we create a variable for our QuerySet: posts.

Treat this as the name of our QuerySet. From now on we can refer

to it by this name.

In the render function we have one parameter request

(everything we receive from the user via the Internet) and another

giving the template file ('blog/post_list.html'). The last

parameter, {}, is a place in which we can add some things for the

template to use. We need to give them names (we will stick to

'posts' right now). :) It should look like this: {'posts':

posts}. Please note that the part before : is a string; you need to

wrap it with quotes: ''.

So finally our blog/views.py file should look like this:

blog/views.py

from django.shortcuts import render

from django.utils import timezone

from .models import Post

def post_list(request):

 posts =

Post.objects.filter(published_date__lte=timezone.now()).order_by('published_date'

Dynamic data in templates · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/dynamic_data_in_...

2 di 3 13/11/2017, 20:03

return render(request, 'blog/post_list.html',

{'posts': posts})

That's it! Time to go back to our template and display this QuerySet!

Want to read a little bit more about QuerySets in Django? You

should look here: https://docs.djangoproject.com/en/1.11/ref/models

/querysets/

Dynamic data in templates · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/dynamic_data_in_...

3 di 3 13/11/2017, 20:03

tutorial.djangogirls.org

Extend your application · Django
Girls Tutorial

DjangoGirls

7-9 minuti

We've already completed all the different steps necessary for the

creation of our website: we know how to write a model, url, view

and template. We also know how to make our website pretty.

Time to practice!

The first thing we need in our blog is, obviously, a page to display

one post, right?

We already have a Post model, so we don't need to add

anything to models.py.

Create a template link to a post's detail

We will start with adding a link inside blog/templates

/blog/post_list.html file. So far it should look like this:

blog/templates/blog/post_list.html

{% extends 'blog/base.html' %}

{% block content %}

 {% for post in posts %}

<div class="post">

<div class="date">

Extend your application · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/extend_your_applic...

1 di 10 13/11/2017, 20:05

 {{ post.published_date }}

</div>

<h1>{{ post.title }}

</h1>

<p>{{ post.text|linebreaksbr }}</p>

</div>

 {% endfor %}

{% endblock %}

We want to have a link from a post's title in the post list to the

post's detail page. Let's change <h1>{{

post.title }}</h1> so that it links to the post's detail

page:

blog/templates/blog/post_list.html

<h1><a href="{% url 'post_detail' pk=post.pk

%}">{{ post.title }}</h1>

Time to explain the mysterious {% url 'post_detail'

pk=post.pk %}. As you might suspect, the {% %} notation

means that we are using Django template tags. This time we will

use one that will create a URL for us!

The post_detail part means that Django will be expecting a

URL in blog/urls.py with name=post_detail

And how about pk=post.pk? pk is short for primary key, which

is a unique name for each record in a database. Because we

didn't specify a primary key in our Post model, Django creates

one for us (by default, a number that increases by one for each

record, i.e. 1, 2, 3) and adds it as a field named pk to each of our

posts. We access the primary key by writing post.pk, the same

way we access other fields (title, author, etc.) in our Post

object!

Extend your application · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/extend_your_applic...

2 di 10 13/11/2017, 20:05

Now when we go to http://127.0.0.1:8000/ we will have an error

(as expected, since we do not yet have a URL or a view for

post_detail). It will look like this:

Create a URL to a post's detail

Let's create a URL in urls.py for our post_detail view!

We want our first post's detail to be displayed at this URL:

http://127.0.0.1:8000/post/1/

Let's make a URL in the blog/urls.py file to point Django to a

view named post_detail, that will show an entire blog post.

Add the line url(r'^post/(?P<pk>\d+)/$',

views.post_detail, name='post_detail'), to the

blog/urls.py file. The file should look like this:

blog/urls.py

from django.conf.urls import url

from . import views

urlpatterns = [

 url(r'^$', views.post_list,

name='post_list'),

 url(r'^post/(?P<pk>\d+)/$',

Extend your application · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/extend_your_applic...

3 di 10 13/11/2017, 20:05

views.post_detail, name='post_detail'),

]

This part ^post/(?P<pk>\d+)/$ looks scary, but no worries –

we will explain it for you:

it starts with ^ again – "the beginning".

post/ just means that after the beginning, the URL should

contain the word post and a /. So far so good.

(?P<pk>\d+) – this part is trickier. It means that Django will

take everything that you place here and transfer it to a view as a

variable called pk. (Note that this matches the name we gave the

primary key variable back in blog/templates

/blog/post_list.html!) \d also tells us that it can only be a

digit, not a letter (so everything between 0 and 9). + means that

there needs to be one or more digits there. So something like

http://127.0.0.1:8000/post// is not valid, but

http://127.0.0.1:8000/post/1234567890/ is perfectly

OK!

/ – then we need a / again.

$ – "the end"!

That means if you enter http://127.0.0.1:8000/post/5/

into your browser, Django will understand that you are looking for

a view called post_detail and transfer the information that pk

equals 5 to that view.

OK, we've added a new URL pattern to blog/urls.py! Let's

refresh the page: http://127.0.0.1:8000/ Boom! The server has

stopped running again. Have a look at the console – as

expected, there's yet another error!

Extend your application · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/extend_your_applic...

4 di 10 13/11/2017, 20:05

Do you remember what the next step is? Of course: adding a

view!

Add a post's detail view

This time our view is given an extra parameter, pk. Our view

needs to catch it, right? So we will define our function as def

post_detail(request, pk):. Note that we need to use

exactly the same name as the one we specified in urls (pk).

Omitting this variable is incorrect and will result in an error!

Now, we want to get one and only one blog post. To do this, we

can use querysets, like this:

blog/views.py

Post.objects.get(pk=pk)

But this code has a problem. If there is no Post with the given

primary key (pk) we will have a super ugly error!

We don't want that! But, of course, Django comes with something

Extend your application · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/extend_your_applic...

5 di 10 13/11/2017, 20:05

that will handle that for us: get_object_or_404. In case there

is no Post with the given pk, it will display much nicer page, the

Page Not Found 404 page.

The good news is that you can actually create your own Page

not found page and make it as pretty as you want. But it's not

super important right now, so we will skip it.

OK, time to add a view to our views.py file!

In blog/urls.py we created a URL rule named post_detail

that refers to a view called views.post_detail. This means

that Django will be expecting a view function called

post_detail inside blog/views.py.

We should open blog/views.py and add the following code

near the other from lines:

blog/views.py

from django.shortcuts import render,

get_object_or_404

And at the end of the file we will add our view:

blog/views.py

def post_detail(request, pk):

 post = get_object_or_404(Post, pk=pk)

return render(request,

Extend your application · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/extend_your_applic...

6 di 10 13/11/2017, 20:05

'blog/post_detail.html', {'post': post})

Yes. It is time to refresh the page: http://127.0.0.1:8000/

It worked! But what happens when you click a link in blog post

title?

Oh no! Another error! But we already know how to deal with it,

Extend your application · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/extend_your_applic...

7 di 10 13/11/2017, 20:05

right? We need to add a template!

Create a template for the post details

We will create a file in blog/templates/blog called

post_detail.html.

It will look like this:

blog/templates/blog/post_detail.html

{% extends 'blog/base.html' %}

{% block content %}

<div class="post">

 {% if post.published_date %}

<div class="date">

 {{ post.published_date }}

</div>

 {% endif %}

<h1>{{ post.title }}</h1>

<p>{{ post.text|linebreaksbr }}</p>

</div>

{% endblock %}

Once again we are extending base.html. In the content block

we want to display a post's published_date (if it exists), title and

text. But we should discuss some important things, right?

{% if ... %} ... {% endif %} is a template tag we can

use when we want to check something. (Remember if ...

else .. from Introduction to Python chapter?) In this

scenario we want to check if a post's published_date is not

empty.

OK, we can refresh our page and see if

Extend your application · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/extend_your_applic...

8 di 10 13/11/2017, 20:05

TemplateDoesNotExist is gone now.

Yay! It works!

One more thing: deploy time!

It'd be good to see if your website will still be working on

PythonAnywhere, right? Let's try deploying again.

command-line

$ git status

$ git add --all .

$ git status

$ git commit -m "Added view and template for

detailed blog post as well as CSS for the site."

$ git push

Then, in a PythonAnywhere Bash console:

command-line

$ cd my-first-blog

$ git pull

Extend your application · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/extend_your_applic...

9 di 10 13/11/2017, 20:05

[...]

Finally, hop on over to the Web tab and hit Reload.

And that should be it! Congrats :)

Extend your application · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/extend_your_applic...

10 di 10 13/11/2017, 20:05

	Django urls ˙ Django Girls Tutorial
	Django views - time to create Django Girls Tutorial
	Dynamic data in templates ˙ Django Girls Tutorial
	Extend your application ˙ Django Girls Tutorial

