
tutorial.djangogirls.org

Django installation · Django Girls
Tutorial

DjangoGirls

7-9 minuti

Note If you're using a Chromebook, skip this chapter and make

sure you follow the Chromebook Setup instructions.

Note If you already worked through the Installation steps then

you've already done this – you can go straight to the next

chapter!

Part of this section is based on tutorials by Geek Girls Carrots

(https://github.com/ggcarrots/django-carrots).

Part of this section is based on the django-marcador tutorial

licensed under the Creative Commons Attribution-ShareAlike 4.0

International License. The django-marcador tutorial is

copyrighted by Markus Zapke-Gründemann et al.

Virtual environment

Before we install Django we will get you to install an extremely

useful tool to help keep your coding environment tidy on your

computer. It's possible to skip this step, but it's highly

recommended. Starting with the best possible setup will save you

a lot of trouble in the future!

So, let's create a virtual environment (also called a virtualenv).

Virtualenv will isolate your Python/Django setup on a per-project

Django installation · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_installation/

1 di 7 13/11/2017, 19:54

basis. This means that any changes you make to one website

won't affect any others you're also developing. Neat, right?

All you need to do is find a directory in which you want to create

the virtualenv; your home directory, for example. On

Windows it might look like C:\Users\Name\ (where Name is the

name of your login).

NOTE: On Windows, make sure that this directory does not

contain accented or special characters; if your username

contains accented characters, use a different directory, for

example C:\djangogirls.

For this tutorial we will be using a new directory djangogirls

from your home directory:

command-line

$ mkdir djangogirls

$ cd djangogirls

We will make a virtualenv called myvenv. The general command

will be in the format:

command-line

$ python3 -m venv myvenv

Virtual environment: Windows

To create a new virtualenv, you need to open the command

prompt and run python -m venv myvenv. It will look like this:

command-line

C:\Users\Name\djangogirls> python -m venv myvenv

Where myvenv is the name of your virtualenv. You can use

any other name, but stick to lowercase and use no spaces,

accents or special characters. It is also good idea to keep the

Django installation · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_installation/

2 di 7 13/11/2017, 19:54

name short – you'll be referencing it a lot!

Virtual environment: Linux and OS X

Creating a virtualenv on both Linux and OS X is as simple as

running python3 -m venv myvenv. It will look like this:

command-line

$ python3 -m venv myvenv

myvenv is the name of your virtualenv. You can use any

other name, but stick to lowercase and use no spaces. It is also

good idea to keep the name short as you'll be referencing it a lot!

NOTE: On some versions of Debian/Ubuntu you may receive the

following error:

command-line

The virtual environment was not created

successfully because ensurepip is not available.

On Debian/Ubuntu systems, you need to install

the python3-venv package using the following

command.

 apt-get install python3-venv

You may need to use sudo with that command.

After installing the python3-venv package,

recreate your virtual environment.

In this case, follow the instructions above and install the

python3-venv package:

command-line

$ sudo apt-get install python3-venv

NOTE: On some versions of Debian/Ubuntu initiating the virtual

environment like this currently gives the following error:

command-line

Django installation · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_installation/

3 di 7 13/11/2017, 19:54

Error: Command '['/home/eddie/Slask/tmp/venv

/bin/python3', '-Im', 'ensurepip', '--upgrade',

'--default-pip']' returned non-zero exit status

1

To get around this, use the virtualenv command instead.

command-line

$ sudo apt-get install python-virtualenv

$ virtualenv --python=python3.6 myvenv

NOTE: If you get an error like

command-line

E: Unable to locate package python3-venv

then instead run:

command-line

sudo apt install python3.6-venv

Working with virtualenv

The command above will create a directory called myvenv (or

whatever name you chose) that contains our virtual environment

(basically a bunch of directory and files).

Working with virtualenv: Windows

Start your virtual environment by running:

command-line

C:\Users\Name\djangogirls> myvenv\Scripts

\activate

NOTE: on Windows 10 you might get an error in the Windows

PowerShell that says execution of scripts is disabled

on this system. In this case, open another Windows

Django installation · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_installation/

4 di 7 13/11/2017, 19:54

PowerShell with the "Run as Administrator" option. Then try

typing the following command before starting your virtual

environment:

command-line

C:\WINDOWS\system32> Set-ExecutionPolicy

-ExecutionPolicy RemoteSigned

 Execution Policy Change

 The execution policy helps protect you from

scripts that you do not trust. Changing the

execution policy might expose you to the

security risks described in the

about_Execution_Policies help topic at

http://go.microsoft.com/fwlink/?LinkID=135170.

Do you want to change the execution policy? [Y]

Yes [A] Yes to All [N] No [L] No to All [S]

Suspend [?] Help (default is "N"): A

Working with virtualenv: Linux and OS X

Start your virtual environment by running:

command-line

$ source myvenv/bin/activate

Remember to replace myvenv with your chosen virtualenv

name!

NOTE: sometimes source might not be available. In those

cases try doing this instead:

command-line

$. myvenv/bin/activate

You will know that you have virtualenv started when you see

that the prompt in your console is prefixed with (myvenv).

Django installation · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_installation/

5 di 7 13/11/2017, 19:54

When working within a virtual environment, python will

automatically refer to the correct version so you can use python

instead of python3.

OK, we have all important dependencies in place. We can finally

install Django!

Installing Django

Now that you have your virtualenv started, you can install

Django.

Before we do that, we should make sure we have the latest

version of pip, the software that we use to install Django:

command-line

(myvenv) ~$ pip install --upgrade pip

Then run pip install django~=1.11.0 (note that we use a

tilde followed by an equal sign: ~=) to install Django.

command-line

(myvenv) ~$ pip install django~=1.11.0

Collecting django~=1.11.0

 Downloading Django-1.11.3-py2.py3-none-any.whl

(6.8MB)

Installing collected packages: django

Successfully installed django-1.11.3

Installing Django: Windows

If you get an error when calling pip on Windows platform, please

check if your project pathname contains spaces, accents or

special characters (for example, C:\Users\User

Name\djangogirls). If it does, please consider using another

place without spaces, accents or special characters (suggestion:

Django installation · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_installation/

6 di 7 13/11/2017, 19:54

C:\djangogirls). Create a new virtualenv in the new

directory, then delete the old one and try the above command

again. (Moving the virtualenv directory won't work since

virtualenv uses absolute paths.)

Installing Django: Windows 8 and Windows 10

Your command line might freeze after when you try to install

Django. If this happens, instead of the above command use:

command-line

C:\Users\Name\djangogirls> python -m pip install

django~=1.11.0

If you get an error when calling pip on Ubuntu 12.04 please run

python -m pip install -U --force-reinstall pip to

fix the pip installation in the virtualenv.

That's it! You're now (finally) ready to create a Django application!

Django installation · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_installation/

7 di 7 13/11/2017, 19:54

Django models

What we want to create now is something that will store all the posts in our blog. But to be

able to do that we need to talk a little bit about things called objects .

Objects

There is a concept in programming called object-oriented programming . The idea is that

instead of writing everything as a boring sequence of programming instructions, we can

model things and define how they interact with each other.

So what is an object? It is a collection of properties and actions. It sounds weird, but we will

give you an example.

If we want to model a cat, we will create an object Cat that has some properties such as

color , age , mood (like good, bad, or sleepy ;)), and owner (which could be assigned a

Person object – or maybe, in case of a stray cat, this property could be empty).

Then the Cat has some actions: purr , scratch , or feed (in which case, we will give

the cat some CatFood , which could be a separate object with properties, like taste).

Cat

color

age

mood

owner

purr()

scratch()

feed(cat_food)

CatFood

taste

So basically the idea is to describe real things in code with properties (called object

properties) and actions (called methods).

Django models · Django Girls Tutorial https://tutorial.djangogirls.org/en/django_models/

1 di 1 13/11/2017, 20:00

tutorial.djangogirls.org

Django ORM (Querysets) · Django Girls
Tutorial

DjangoGirls

6-7 minuti

In this chapter you'll learn how Django connects to the database

and stores data in it. Let's dive in!

What is a QuerySet?

A QuerySet is, in essence, a list of objects of a given Model.

QuerySets allow you to read the data from the database, filter it and

order it.

It's easiest to learn by example. Let's try this, shall we?

Django shell

Open up your local console (not on PythonAnywhere) and type this

command:

command-line

(myvenv) ~/djangogirls$ python manage.py shell

The effect should be like this:

command-line

(InteractiveConsole)

>>>

You're now in Django's interactive console. It's just like the Python

prompt, but with some additional Django magic. :) You can use all

the Python commands here too, of course.

All objects

Let's try to display all of our posts first. You can do that with the

following command:

command-line

>>> Post.objects.all()

Traceback (most recent call last):

 File "<console>", line 1, in <module>

NameError: name 'Post' is not defined

Oops! An error showed up. It tells us that there is no Post. It's

correct – we forgot to import it first!

command-line

Django ORM (Querysets) · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_orm/

1 di 4 13/11/2017, 20:02

>>> from blog.models import Post

This is simple: we import the model Post from blog.models.

Let's try displaying all posts again:

command-line

>>> Post.objects.all()

<QuerySet [<Post: my post title>, <Post: another

post title>]>

This is a list of the posts we created earlier! We created these posts

using the Django admin interface. But now we want to create new

posts using Python, so how do we do that?

Create object

This is how you create a new Post object in database:

command-line

>>> Post.objects.create(author=me, title='Sample

title', text='Test')

But we have one missing ingredient here: me. We need to pass an

instance of User model as an author. How do we do that?

Let's import User model first:

command-line

>>> from django.contrib.auth.models import User

What users do we have in our database? Try this:

command-line

>>> User.objects.all()

<QuerySet [<User: ola>]>

This is the superuser we created earlier! Let's get an instance of the

user now:

command-line

>>> me = User.objects.get(username='ola')

As you can see, we now get a User with a username that equals

'ola'. Neat! Of course, you have to adjust this line to use your own

username.

Now we can finally create our post:

command-line

>>> Post.objects.create(author=me, title='Sample

title', text='Test')

Hurray! Wanna check if it worked?

command-line

>>> Post.objects.all()

<QuerySet [<Post: my post title>, <Post: another

Django ORM (Querysets) · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_orm/

2 di 4 13/11/2017, 20:02

post title>, <Post: Sample title>]>

There it is, one more post in the list!

Add more posts

You can now have a little fun and add more posts to see how it

works. Add two or three more and then go ahead to the next part.

Filter objects

A big part of QuerySets is the ability to filter them. Let's say we

want to find all posts that user ola authored. We will use filter

instead of all in Post.objects.all(). In parentheses we state

what condition(s) a blog post needs to meet to end up in our

queryset. In our case, the condition is that author should be equal

to me. The way to write it in Django is author=me. Now our piece

of code looks like this:

command-line

>>> Post.objects.filter(author=me)

[<Post: Sample title>, <Post: Post number 2>,

<Post: My 3rd post!>, <Post: 4th title of post>]

Or maybe we want to see all the posts that contain the word 'title' in

the title field?

command-line

>>> Post.objects.filter(title__contains='title')

[<Post: Sample title>, <Post: 4th title of post>]

There are two underscore characters (_) between title and

contains. Django's ORM uses this rule to separate field names

("title") and operations or filters ("contains"). If you use only one

underscore, you'll get an error like "FieldError: Cannot resolve

keyword title_contains".

You can also get a list of all published posts. We do this by filtering

all the posts that have published_date set in the past:

command-line

>>> from django.utils import timezone

>>>

Post.objects.filter(published_date__lte=timezone.now())

[]

Unfortunately, the post we added from the Python console is not

published yet. But we can change that! First get an instance of a

post we want to publish:

command-line

>>> post = Post.objects.get(title="Sample title")

And then publish it with our publish method:

Django ORM (Querysets) · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_orm/

3 di 4 13/11/2017, 20:02

command-line

>>> post.publish()

Now try to get list of published posts again (press the up arrow key

three times and hit enter):

command-line

>>>

Post.objects.filter(published_date__lte=timezone.now())

[<Post: Sample title>]

Ordering objects

QuerySets also allow you to order the list of objects. Let's try to

order them by created_date field:

command-line

>>> Post.objects.order_by('created_date')

[<Post: Sample title>, <Post: Post number 2>,

<Post: My 3rd post!>, <Post: 4th title of post>]

We can also reverse the ordering by adding - at the beginning:

command-line

>>> Post.objects.order_by('-created_date')

[<Post: 4th title of post>, <Post: My 3rd post!>,

<Post: Post number 2>, <Post: Sample title>]

Chaining QuerySets

You can also combine QuerySets by chaining them together:

>>>

Post.objects.filter(published_date__lte=timezone.now()).order_by('published_date')

This is really powerful and lets you write quite complex queries.

Cool! You're now ready for the next part! To close the shell, type

this:

command-line

>>> exit()

$

Django ORM (Querysets) · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_orm/

4 di 4 13/11/2017, 20:02

tutorial.djangogirls.org

Django templates · Django Girls
Tutorial

DjangoGirls

4-5 minuti

Time to display some data! Django gives us some helpful built-in

template tags for that.

You see, in HTML, you can't really write Python code, because

browsers don't understand it. They know only HTML. We know

that HTML is rather static, while Python is much more dynamic.

Django template tags allow us to transfer Python-like things into

HTML, so you can build dynamic websites faster and easier.

Cool!

Display post list template

In the previous chapter we gave our template a list of posts in the

posts variable. Now we will display it in HTML.

To print a variable in Django templates, we use double curly

brackets with the variable's name inside, like this:

blog/templates/blog/post_list.html

{{ posts }}

Try this in your blog/templates/blog/post_list.html

template. Replace everything from the second <div> to the third

</div> with {{ posts }}. Save the file, and refresh the page

Django templates · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_templates/

1 di 5 13/11/2017, 20:03

to see the results:

As you can see, all we've got is this:

blog/templates/blog/post_list.html

<QuerySet [<Post: My second post>, <Post: My

first post>]>

This means that Django understands it as a list of objects.

Remember from Introduction to Python how we can display

lists? Yes, with for loops! In a Django template you do them like

this:

blog/templates/blog/post_list.html

{% for post in posts %}

 {{ post }}

{% endfor %}

Try this in your template.

It works! But we want the posts to be displayed like the static

posts we created earlier in the Introduction to HTML chapter.

Django templates · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_templates/

2 di 5 13/11/2017, 20:03

You can mix HTML and template tags. Our body will look like

this:

blog/templates/blog/post_list.html

<div>

<h1>Django Girls Blog</h1>

</div>

{% for post in posts %}

<div>

<p>published: {{ post.published_date

}}</p>

<h1>{{ post.title }}</h1>

<p>{{ post.text|linebreaksbr }}</p>

</div>

{% endfor %}

Everything you put between {% for %} and {% endfor %}

will be repeated for each object in the list. Refresh your page:

Django templates · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_templates/

3 di 5 13/11/2017, 20:03

Have you noticed that we used a slightly different notation this

time ({{ post.title }} or {{ post.text }})? We are

accessing data in each of the fields defined in our Post model.

Also, the |linebreaksbr is piping the posts' text through a

filter to convert line-breaks into paragraphs.

One more thing

It'd be good to see if your website will still be working on the

public Internet, right? Let's try deploying to PythonAnywhere

again. Here's a recap of the steps…

First, push your code to Github

command-line

$ git status

[...]

$ git add --all .

$ git status

[...]

$ git commit -m "Modified templates to display

posts from database."

[...]

$ git push

Then, log back in to PythonAnywhere and go to your Bash

console (or start a new one), and run:

PythonAnywhere command-line

$ cd my-first-blog

$ git pull

[...]

Finally, hop on over to the Web tab and hit Reload on your web

Django templates · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_templates/

4 di 5 13/11/2017, 20:03

app. Your update should be live! If the blog posts on your

PythonAnywhere site don't match the posts appearing on the

blog hosted on your local server, that's OK. The databases on

your local computer and Python Anywhere don't sync with the

rest of your files.

Congrats! Now go ahead and try adding a new post in your

Django admin (remember to add published_date!) Make sure you

are in the Django admin for your pythonanywhere site,

https://yourname.pythonanywhere.com/admin. Then refresh your

page to see if the post appears there.

Works like a charm? We're proud! Step away from your computer

for a bit – you have earned a break. :)

Django templates · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_templates/

5 di 5 13/11/2017, 20:03

	Django installation ˙ Django Girls Tutorial
	Django models ˙ Django Girls Tutorial
	Django ORM (Querysets) ˙ Django Girls Tutorial
	Django templates ˙ Django Girls Tutorial

