
tutorial.djangogirls.org

Code editor · Django Girls Tutorial

DjangoGirls

3 minuti

For readers at home: this chapter is covered in the Installing

Python & Code Editor video.

You're about to write your first line of code, so it's time to

download a code editor!

If you're using a Chromebook, skip this chapter and make sure

you follow the Chromebook Setup instructions.

Note You might have done this earlier in the Installation chapter

– if so, you can skip right ahead to the next chapter!

There are a lot of different editors and it largely boils down to

personal preference. Most Python programmers use complex but

extremely powerful IDEs (Integrated Development

Environments), such as PyCharm. As a beginner, however, that's

probably less suitable; our recommendations are equally

powerful, but a lot simpler.

Our suggestions are below, but feel free to ask your coach what

their preferences are – it'll be easier to get help from them.

Gedit

Gedit is an open-source, free editor, available for all operating

systems.

Download it here

Code editor · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/code_editor/

1 di 2 13/11/2017, 19:53

Sublime Text 3

Sublime Text is a very popular editor with a free evaluation

period. It's easy to install and use, and it's available for all

operating systems.

Download it here

Atom

Atom is an extremely new code editor created by GitHub. It's

free, open-source, easy to install and easy to use. It's available

for Windows, OS X and Linux.

Download it here

Why are we installing a code editor?

You might be wondering why we are installing this special code

editor software, rather than using something like Word or

Notepad.

The first reason is that code needs to be plain text, and the

problem with programs like Word and Textedit is that they don't

actually produce plain text, they produce rich text (with fonts and

formatting), using custom formats like RTF (Rich Text Format).

The second reason is that code editors are specialized for editing

code, so they can provide helpful features like highlighting code

with color according to its meaning, or automatically closing

quotes for you.

We'll see all this in action later. Soon, you'll come to think of your

trusty old code editor as one of your favorite tools. :)

Code editor · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/code_editor/

2 di 2 13/11/2017, 19:53

tutorial.djangogirls.org

CSS – make it pretty · Django Girls
Tutorial

DjangoGirls

10-12 minuti

Our blog still looks pretty ugly, right? Time to make it nice! We will

use CSS for that.

What is CSS?

Cascading Style Sheets (CSS) is a language used for describing

the look and formatting of a website written in a markup language

(like HTML). Treat it as make-up for our web page. ;)

But we don't want to start from scratch again, right? Once more,

we'll use something that programmers released on the Internet

for free. Reinventing the wheel is no fun, you know.

Let's use Bootstrap!

Bootstrap is one of the most popular HTML and CSS frameworks

for developing beautiful websites: https://getbootstrap.com/

It was written by programmers who worked for Twitter. Now it's

developed by volunteers from all over the world!

Install Bootstrap

To install Bootstrap, you need to add this to your <head> in your

.html file:

CSS – make it pretty · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/css/

1 di 12 13/11/2017, 20:04

blog/templates/blog/post_list.html

<link rel="stylesheet"

href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0

/css/bootstrap.min.css">

<link rel="stylesheet"

href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0

/css/bootstrap-theme.min.css">

This doesn't add any files to your project. It just points to files that

exist on the Internet. Just go ahead, open your website and

refresh the page. Here it is!

Looking nicer already!

Static files in Django

Finally we will take a closer look at these things we've been

calling static files. Static files are all your CSS and images. Their

content doesn't depend on the request context and will be the

same for every user.

Where to put static files for Django

Django already knows where to find the static files for the built-in

"admin" app. Now we just need to add some static files for our

CSS – make it pretty · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/css/

2 di 12 13/11/2017, 20:04

own app, blog.

We do that by creating a folder called static inside the blog

app:

djangogirls

├── blog

│ ├── migrations

│ ├── static

│ └── templates

└── mysite

Django will automatically find any folders called "static" inside

any of your apps' folders. Then it will be able to use their

contents as static files.

Your first CSS file!

Let's create a CSS file now, to add your own style to your web

page. Create a new directory called css inside your static

directory. Then create a new file called blog.css inside this css

directory. Ready?

djangogirls

└─── blog

 └─── static

 └─── css

 └─── blog.css

Time to write some CSS! Open up the blog/static

/css/blog.css file in your code editor.

We won't be going too deep into customizing and learning about

CSS here. It's pretty easy and you can learn it on your own after

this workshop. There is a recommendation for a free course to

learn more at the end of this page.

CSS – make it pretty · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/css/

3 di 12 13/11/2017, 20:04

But let's do at least a little. Maybe we could change the color of

our header? To understand colors, computers use special codes.

These codes start with # followed by 6 letters (A–F) and numbers

(0–9). For example, the code for blue is #0000FF. You can find

the color codes for many colors here:

http://www.colorpicker.com/. You may also use predefined colors,

such as red and green.

In your blog/static/css/blog.css file you should add the

following code:

blog/static/css/blog.css

h1 a {

color: #FCA205;

}

h1 a is a CSS Selector. This means we're applying our styles to

any a element inside of an h1 element. So when we have

something like <h1>link</h1>, the h1 a

style will apply. In this case, we're telling it to change its color to

#FCA205, which is orange. Of course, you can put your own

color here!

In a CSS file we determine styles for elements in the HTML file.

The first way we identify elements is with the element name. You

might remember these as tags from the HTML section. Things

like a, h1, and body are all examples of element names. We also

identify elements by the attribute class or the attribute id. Class

and id are names you give the element by yourself. Classes

define groups of elements, and ids point to specific elements. For

example, you could identify the following tag by using the tag

name a, the class external_link, or the id

link_to_wiki_page:

CSS – make it pretty · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/css/

4 di 12 13/11/2017, 20:04

<a href="https://en.wikipedia.org/wiki/Django"

class="external_link" id="link_to_wiki_page">

You can read more about CSS Selectors at w3schools.

We also need to tell our HTML template that we added some

CSS. Open the blog/templates/blog/post_list.html file

and add this line at the very beginning of it:

blog/templates/blog/post_list.html

{% load staticfiles %}

We're just loading static files here. :) Between the <head> and

</head> tags, after the links to the Bootstrap CSS files, add this

line:

blog/templates/blog/post_list.html

<link rel="stylesheet" href="{% static

'css/blog.css' %}">

The browser reads the files in the order they're given, so we

need to make sure this is in the right place. Otherwise the code in

our file may be overriden by code in Bootstrap files. We just told

our template where our CSS file is located.

Your file should now look like this:

blog/templates/blog/post_list.html

{% load staticfiles %}

<html>

<head>

<title>Django Girls blog</title>

<link rel="stylesheet"

href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0

/css/bootstrap.min.css">

<link rel="stylesheet"

CSS – make it pretty · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/css/

5 di 12 13/11/2017, 20:04

href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0

/css/bootstrap-theme.min.css">

<link rel="stylesheet" href="{% static

'css/blog.css' %}">

</head>

<body>

<div>

<h1>Django Girls

Blog</h1>

</div>

 {% for post in posts %}

<div>

<p>published: {{

post.published_date }}</p>

<h1>{{ post.title

}}</h1>

<p>{{ post.text|linebreaksbr

}}</p>

</div>

 {% endfor %}

</body>

</html>

OK, save the file and refresh the site!

CSS – make it pretty · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/css/

6 di 12 13/11/2017, 20:04

Nice work! Maybe we would also like to give our website a little

air and increase the margin on the left side? Let's try this!

blog/static/css/blog.css

body {

padding-left: 15px;

}

Add that to your CSS, save the file and see how it works!

Maybe we can customize the font in our header? Paste this into

your <head> in blog/templates/blog/post_list.html

file:

blog/templates/blog/post_list.html

<link href="//fonts.googleapis.com

/css?family=Lobster&subset=latin,latin-ext"

rel="stylesheet" type="text/css">

As before, check the order and place before the link to

blog/static/css/blog.css. This line will import a font

called Lobster from Google Fonts (https://www.google.com

CSS – make it pretty · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/css/

7 di 12 13/11/2017, 20:04

/fonts).

Find the h1 a declaration block (the code between braces { and

}) in the CSS file blog/static/css/blog.css. Now add the

line font-family: 'Lobster'; between the braces, and

refresh the page:

blog/static/css/blog.css

h1 a {

color: #FCA205;

font-family: 'Lobster';

}

Great!

As mentioned above, CSS has a concept of classes. These allow

you to name a part of the HTML code and apply styles only to

this part, without affecting other parts. This can be super helpful!

Maybe you have two divs that are doing something different (like

your header and your post). A class can help you make them

look different.

Go ahead and name some parts of the HTML code. Add a class

called page-header to your div that contains your header, like

this:

CSS – make it pretty · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/css/

8 di 12 13/11/2017, 20:04

blog/templates/blog/post_list.html

<div class="page-header">

<h1>Django Girls Blog</h1>

</div>

And now add a class post to your div containing a blog post.

blog/templates/blog/post_list.html

<div class="post">

<p>published: {{ post.published_date }}</p>

<h1>{{ post.title }}</h1>

<p>{{ post.text|linebreaksbr }}</p>

</div>

We will now add declaration blocks to different selectors.

Selectors starting with . relate to classes. There are many great

tutorials and explanations about CSS on the Web that can help

you understand the following code. For now, just copy and paste

it into your blog/static/css/blog.css file:

blog/static/css/blog.css

.page-header {

background-color: #ff9400;

margin-top: 0;

padding: 20px 20px 20px 40px;

}

.page-header h1, .page-header h1 a, .page-header

h1 a:visited, .page-header h1 a:active {

color: #ffffff;

font-size: 36pt;

text-decoration: none;

}

CSS – make it pretty · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/css/

9 di 12 13/11/2017, 20:04

.content {

margin-left: 40px;

}

h1, h2, h3, h4 {

font-family: 'Lobster', cursive;

}

.date {

color: #828282;

}

.save {

float: right;

}

.post-form textarea, .post-form input {

width: 100%;

}

.top-menu, .top-menu:hover, .top-menu:visited {

color: #ffffff;

float: right;

font-size: 26pt;

margin-right: 20px;

}

.post {

margin-bottom: 70px;

}

CSS – make it pretty · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/css/

10 di 12 13/11/2017, 20:04

.post h1 a, .post h1 a:visited {

color: #000000;

}

Then surround the HTML code which displays the posts with

declarations of classes. Replace this:

blog/templates/blog/post_list.html

{% for post in posts %}

<div class="post">

<p>published: {{ post.published_date

}}</p>

<h1>{{ post.title }}</h1>

<p>{{ post.text|linebreaksbr }}</p>

</div>

{% endfor %}

in the blog/templates/blog/post_list.html with this:

blog/templates/blog/post_list.html

<div class="content container">

<div class="row">

<div class="col-md-8">

 {% for post in posts %}

<div class="post">

<div class="date">

<p>published: {{

post.published_date }}</p>

</div>

<h1>{{ post.title

}}</h1>

<p>{{ post.text|linebreaksbr

}}</p>

</div>

CSS – make it pretty · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/css/

11 di 12 13/11/2017, 20:04

 {% endfor %}

</div>

</div>

</div>

Save those files and refresh your website.

Woohoo! Looks awesome, right? Look at the code we just pasted

to find the places where we added classes in the HTML and used

them in the CSS. Where would you make the change if you

wanted the date to be turquoise?

Don't be afraid to tinker with this CSS a little bit and try to change

some things. Playing with the CSS can help you understand what

the different things are doing. If you break something, don't worry

– you can always undo it!

We really recommend taking this free online Codeacademy

HTML & CSS course. It can help you learn all about making your

websites prettier with CSS.

Ready for the next chapter?! :)

CSS – make it pretty · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/css/

12 di 12 13/11/2017, 20:04

tutorial.djangogirls.org

Django admin · Django Girls Tutorial

DjangoGirls

3-4 minuti

To add, edit and delete the posts we've just modeled, we will use

Django admin.

Let's open the blog/admin.py file and replace its contents with

this:

blog/admin.py

from django.contrib import admin

from .models import Post

admin.site.register(Post)

As you can see, we import (include) the Post model defined in

the previous chapter. To make our model visible on the admin

page, we need to register the model with

admin.site.register(Post).

OK, time to look at our Post model. Remember to run python

manage.py runserver in the console to run the web server.

Go to your browser and type the address http://127.0.0.1:8000

/admin/. You will see a login page like this:

Django admin · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_admin/

1 di 4 13/11/2017, 20:00

To log in, you need to create a superuser - a user account that

has control over everything on the site. Go back to the command

line, type python manage.py createsuperuser, and press

enter.

Remember, to write new commands while the web server is

running, open a new terminal window and activate your

virtualenv. We reviewed how to write new commands in the Your

first Django project! chapter, in the Starting the web server

section.

When prompted, type your username (lowercase, no spaces),

email address, and password. Don't worry that you can't see the

password you're typing in – that's how it's supposed to be. Just

type it in and press enter to continue. The output should look

like this (where the username and email should be your own

ones):

command-line

(myvenv) ~/djangogirls$ python manage.py

createsuperuser

Username: admin

Email address: admin@admin.com

Password:

Password (again):

Superuser created successfully.

Return to your browser. Log in with the superuser's credentials

Django admin · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_admin/

2 di 4 13/11/2017, 20:00

you chose; you should see the Django admin dashboard.

Go to Posts and experiment a little bit with it. Add five or six blog

posts. Don't worry about the content – you can simply copy-paste

some text from this tutorial to save time. :)

Make sure that at least two or three posts (but not all) have the

publish date set. It will be helpful later.

If you want to know more about Django admin, you should check

Django's documentation: https://docs.djangoproject.com/en/1.11

/ref/contrib/admin/

This is probably a good moment to grab a coffee (or tea) or

something to eat to re-energize yourself. You created your first

Django admin · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_admin/

3 di 4 13/11/2017, 20:00

Django model – you deserve a little break!

Django admin · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_admin/

4 di 4 13/11/2017, 20:00

tutorial.djangogirls.org

Django Forms · Django Girls Tutorial

DjangoGirls

15-19 minuti

The final thing we want to do on our website is create a nice way

to add and edit blog posts. Django's admin is cool, but it is rather

hard to customize and make pretty. With forms we will have

absolute power over our interface – we can do almost anything

we can imagine!

The nice thing about Django forms is that we can either define

one from scratch or create a ModelForm which will save the

result of the form to the model.

This is exactly what we want to do: we will create a form for our

Post model.

Like every important part of Django, forms have their own file:

forms.py.

We need to create a file with this name in the blog directory.

blog

 └── forms.py

OK, let's open it and type the following code:

blog/forms.py

from django import forms

from .models import Post

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

1 di 18 13/11/2017, 20:06

class PostForm(forms.ModelForm):

class Meta:

 model = Post

 fields = ('title', 'text',)

We need to import Django forms first (from django import

forms) and, obviously, our Post model (from .models

import Post).

PostForm, as you probably suspect, is the name of our form.

We need to tell Django that this form is a ModelForm (so Django

will do some magic for us) – forms.ModelForm is responsible

for that.

Next, we have class Meta, where we tell Django which model

should be used to create this form (model = Post).

Finally, we can say which field(s) should end up in our form. In

this scenario we want only title and text to be exposed –

author should be the person who is currently logged in (you!)

and created_date should be automatically set when we create

a post (i.e. in the code), right?

And that's it! All we need to do now is use the form in a view and

display it in a template.

So once again we will create a link to the page, a URL, a view

and a template.

Link to a page with the form

It's time to open blog/templates/blog/base.html. We will

add a link in div named page-header:

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

2 di 18 13/11/2017, 20:06

blog/templates/blog/base.html

<a href="{% url 'post_new' %}" class="top-

menu">

Note that we want to call our new view post_new. The class

"glyphicon glyphicon-plus" is provided by the bootstrap

theme we are using, and will display a plus sign for us.

After adding the line, your HTML file should now look like this:

blog/templates/blog/base.html

{% load staticfiles %}

<html>

<head>

<title>Django Girls blog</title>

<link rel="stylesheet"

href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0

/css/bootstrap.min.css">

<link rel="stylesheet"

href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0

/css/bootstrap-theme.min.css">

<link href='//fonts.googleapis.com

/css?family=Lobster&subset=latin,latin-ext'

rel='stylesheet' type='text/css'>

<link rel="stylesheet" href="{% static

'css/blog.css' %}">

</head>

<body>

<div class="page-header">

<a href="{% url 'post_new' %}"

class="top-menu"><span class="glyphicon

glyphicon-plus">

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

3 di 18 13/11/2017, 20:06

<h1>Django Girls

Blog</h1>

</div>

<div class="content container">

<div class="row">

<div class="col-md-8">

 {% block content %}

 {% endblock %}

</div>

</div>

</div>

</body>

</html>

After saving and refreshing the page http://127.0.0.1:8000 you

will obviously see a familiar NoReverseMatch error, right?

URL

We open blog/urls.py and add a line:

blog/urls.py

url(r'^post/new/$', views.post_new,

name='post_new'),

And the final code will look like this:

blog/urls.py

from django.conf.urls import url

from . import views

urlpatterns = [

 url(r'^$', views.post_list,

name='post_list'),

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

4 di 18 13/11/2017, 20:06

 url(r'^post/(?P<pk>\d+)/$',

views.post_detail, name='post_detail'),

 url(r'^post/new/$', views.post_new,

name='post_new'),

]

After refreshing the site, we see an AttributeError, since we

don't have the post_new view implemented. Let's add it right

now.

post_new view

Time to open the blog/views.py file and add the following

lines with the rest of the from rows:

blog/views.py

from .forms import PostForm

And then our view:

blog/views.py

def post_new(request):

 form = PostForm()

return render(request,

'blog/post_edit.html', {'form': form})

To create a new Post form, we need to call PostForm() and

pass it to the template. We will go back to this view, but for now,

let's quickly create a template for the form.

Template

We need to create a file post_edit.html in the

blog/templates/blog directory. To make a form work we

need several things:

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

5 di 18 13/11/2017, 20:06

We have to display the form. We can do that with (for example) a

simple {{ form.as_p }}.

The line above needs to be wrapped with an HTML form tag:

<form method="POST">...</form>.

We need a Save button. We do that with an HTML button:

<button type="submit">Save</button>.

And finally, just after the opening <form ...> tag we need to

add {% csrf_token %}. This is very important, since it makes

your forms secure! If you forget about this bit, Django will

complain when you try to save the form:

OK, so let's see how the HTML in post_edit.html should

look:

blog/templates/blog/post_edit.html

{% extends 'blog/base.html' %}

{% block content %}

<h1>New post</h1>

<form method="POST" class="post-form">{%

csrf_token %}

 {{ form.as_p }}

<button type="submit" class="save btn

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

6 di 18 13/11/2017, 20:06

btn-default">Save</button>

</form>

{% endblock %}

Time to refresh! Yay! Your form is displayed!

But, wait a minute! When you type something in the title and

text fields and try to save it, what will happen?

Nothing! We are once again on the same page and our text is

gone… and no new post is added. So what went wrong?

The answer is: nothing. We need to do a little bit more work in

our view.

Saving the form

Open blog/views.py once again. Currently all we have in the

post_new view is the following:

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

7 di 18 13/11/2017, 20:06

blog/views.py

def post_new(request):

 form = PostForm()

return render(request,

'blog/post_edit.html', {'form': form})

When we submit the form, we are brought back to the same view,

but this time we have some more data in request, more

specifically in request.POST (the naming has nothing to do with

a blog "post"; it's to do with the fact that we're "posting" data).

Remember how in the HTML file, our <form> definition had the

variable method="POST"? All the fields from the form are now in

request.POST. You should not rename POST to anything else

(the only other valid value for method is GET, but we have no

time to explain what the difference is).

So in our view we have two separate situations to handle: first,

when we access the page for the first time and we want a blank

form, and second, when we go back to the view with all form data

we just typed. So we need to add a condition (we will use if for

that):

blog/views.py

if request.method == "POST":

 [...]

else:

 form = PostForm()

It's time to fill in the dots [...]. If method is POST then we want

to construct the PostForm with data from the form, right? We will

do that as follows:

blog/views.py

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

8 di 18 13/11/2017, 20:06

form = PostForm(request.POST)

Easy! The next thing is to check if the form is correct (all required

fields are set and no incorrect values have been submitted). We

do that with form.is_valid().

We check if the form is valid and if so, we can save it!

blog/views.py

if form.is_valid():

 post = form.save(commit=False)

 post.author = request.user

 post.published_date = timezone.now()

 post.save()

Basically, we have two things here: we save the form with

form.save and we add an author (since there was no author

field in the PostForm and this field is required). commit=False

means that we don't want to save the Post model yet – we want

to add the author first. Most of the time you will use

form.save() without commit=False, but in this case, we

need to supply it. post.save() will preserve changes (adding

the author) and a new blog post is created!

Finally, it would be awesome if we could immediately go to the

post_detail page for our newly created blog post, right? To do

that we need one more import:

blog/views.py

from django.shortcuts import redirect

Add it at the very beginning of your file. And now we can say, "go

to the post_detail page for the newly created post":

blog/views.py

return redirect('post_detail', pk=post.pk)

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

9 di 18 13/11/2017, 20:06

post_detail is the name of the view we want to go to.

Remember that this view requires a pk variable? To pass it to the

views, we use pk=post.pk, where post is the newly created

blog post!

OK, we've talked a lot, but we probably want to see what the

whole view looks like now, right?

blog/views.py

def post_new(request):

if request.method == "POST":

 form = PostForm(request.POST)

if form.is_valid():

 post = form.save(commit=False)

 post.author = request.user

 post.published_date = timezone.now()

 post.save()

return redirect('post_detail',

pk=post.pk)

else:

 form = PostForm()

return render(request,

'blog/post_edit.html', {'form': form})

Let's see if it works. Go to the page http://127.0.0.1:8000

/post/new/, add a title and text, save it… and voilà! The new

blog post is added and we are redirected to the post_detail

page!

You might have noticed that we are setting the publish date

before saving the post. Later on, we will introduce a publish

button in Django Girls Tutorial: Extensions.

That is awesome!

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

10 di 18 13/11/2017, 20:06

As we have recently used the Django admin interface, the

system currently thinks we are still logged in. There are a few

situations that could lead to us being logged out (closing the

browser, restarting the DB, etc.). If, when creating a post, you

find that you are getting errors referring to the lack of a logged-in

user, head to the admin page http://127.0.0.1:8000/admin and

log in again. This will fix the issue temporarily. There is a

permanent fix awaiting you in the Homework: add security to

your website! chapter after the main tutorial.

Form validation

Now, we will show you how cool Django forms are. A blog post

needs to have title and text fields. In our Post model we did

not say that these fields (as opposed to published_date) are

not required, so Django, by default, expects them to be set.

Try to save the form without title and text. Guess what will

happen!

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

11 di 18 13/11/2017, 20:06

Django is taking care to validate that all the fields in our form are

correct. Isn't it awesome?

Edit form

Now we know how to add a new form. But what if we want to edit

an existing one? This is very similar to what we just did. Let's

create some important things quickly. (If you don't understand

something, you should ask your coach or look at the previous

chapters, since we covered all these steps already.)

Open blog/templates/blog/post_detail.html and add

the line

blog/templates/blog/post_detail.html

<a class="btn btn-default" href="{% url

'post_edit' pk=post.pk %}"><span

class="glyphicon glyphicon-pencil">

so that the template will look like this:

blog/templates/blog/post_detail.html

{% extends 'blog/base.html' %}

{% block content %}

<div class="post">

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

12 di 18 13/11/2017, 20:06

 {% if post.published_date %}

<div class="date">

 {{ post.published_date }}

</div>

 {% endif %}

<a class="btn btn-default" href="{% url

'post_edit' pk=post.pk %}"><span

class="glyphicon glyphicon-pencil">

<h1>{{ post.title }}</h1>

<p>{{ post.text|linebreaksbr }}</p>

</div>

{% endblock %}

In blog/urls.py we add this line:

blog/urls.py

 url(r'^post/(?P<pk>\d+)/edit/$',

views.post_edit, name='post_edit'),

We will reuse the template blog/templates

/blog/post_edit.html, so the last missing thing is a view.

Let's open blog/views.py and add this at the very end of the

file:

blog/views.py

def post_edit(request, pk):

 post = get_object_or_404(Post, pk=pk)

if request.method == "POST":

 form = PostForm(request.POST,

instance=post)

if form.is_valid():

 post = form.save(commit=False)

 post.author = request.user

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

13 di 18 13/11/2017, 20:06

 post.published_date = timezone.now()

 post.save()

return redirect('post_detail',

pk=post.pk)

else:

 form = PostForm(instance=post)

return render(request,

'blog/post_edit.html', {'form': form})

This looks almost exactly the same as our post_new view, right?

But not entirely. For one, we pass an extra pk parameter from

urls. Next, we get the Post model we want to edit with

get_object_or_404(Post, pk=pk) and then, when we

create a form, we pass this post as an instance, both when we

save the form…

blog/views.py

form = PostForm(request.POST, instance=post)

…and when we've just opened a form with this post to edit:

blog/views.py

form = PostForm(instance=post)

OK, let's test if it works! Let's go to the post_detail page.

There should be an edit button in the top-right corner:

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

14 di 18 13/11/2017, 20:06

When you click it you will see the form with our blog post:

Feel free to change the title or the text and save the changes!

Congratulations! Your application is getting more and more

complete!

If you need more information about Django forms, you should

read the documentation: https://docs.djangoproject.com/en/1.11

/topics/forms/

Security

Being able to create new posts just by clicking a link is awesome!

But right now, anyone who visits your site will be able to make a

new blog post, and that's probably not something you want. Let's

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

15 di 18 13/11/2017, 20:06

make it so the button shows up for you but not for anyone else.

In blog/templates/blog/base.html, find our page-

header div and the anchor tag you put in there earlier. It should

look like this:

blog/templates/blog/base.html

<a href="{% url 'post_new' %}" class="top-

menu">

We're going to add another {% if %} tag to this, which will

make the link show up only for users who are logged into the

admin. Right now, that's just you! Change the <a> tag to look like

this:

blog/templates/blog/base.html

{% if user.is_authenticated %}

<a href="{% url 'post_new' %}" class="top-

menu">

{% endif %}

This {% if %} will cause the link to be sent to the browser only

if the user requesting the page is logged in. This doesn't protect

the creation of new posts completely, but it's a good first step.

We'll cover more security in the extension lessons.

Remember the edit icon we just added to our detail page? We

also want to add the same change there, so other people won't

be able to edit existing posts.

Open blog/templates/blog/post_detail.html and find

this line:

blog/templates/blog/post_detail.html

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

16 di 18 13/11/2017, 20:06

<a class="btn btn-default" href="{% url

'post_edit' pk=post.pk %}"><span

class="glyphicon glyphicon-pencil">

Change it to this:

blog/templates/blog/post_detail.html

{% if user.is_authenticated %}

<a class="btn btn-default" href="{% url

'post_edit' pk=post.pk %}"><span

class="glyphicon glyphicon-pencil">

{% endif %}

Since you're likely logged in, if you refresh the page, you won't

see anything different. Load the page in a different browser or an

incognito window (called "InPrivate" in Windows Edge), though,

and you'll see that the link doesn't show up, and the icon doesn't

display either!

One more thing: deploy time!

Let's see if all this works on PythonAnywhere. Time for another

deploy!

First, commit your new code, and push it up to Github:

command-line

$ git status

$ git add --all .

$ git status

$ git commit -m "Added views to create/edit blog

post inside the site."

$ git push

Then, in a PythonAnywhere Bash console:

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

17 di 18 13/11/2017, 20:06

command-line

$ cd my-first-blog

$ git pull

[...]

Finally, hop on over to the Web tab and hit Reload.

And that should be it! Congrats :)

Django Forms · Django Girls Tutorial about:reader?url=https://tutorial.djangogirls.org/en/django_forms/

18 di 18 13/11/2017, 20:06

	Code editor ˙ Django Girls Tutorial
	CSS - make it pretty ˙ Django Girls Tutorial
	Django admin ˙ Django Girls Tutorial
	Django Forms ˙ Django Girls Tutorial

